Сцепленное наследование признаков задачи с решением

Автор: | 14.08.2018

1. Полное сцепление

Перед решением задач на сцепленное наследование целесообразно сравнить результаты анализирующего скрещивания при независимом и сцепленном наследовании:

Независимое наследование

А – желтая окраска, а – зеленая окраска,
В – гладкие семена, b – морщинистые семена.

Сцепленное наследование (кроссинговер отсутствует)

А – серое тело, а – черное тело,
В – нормальные крылья, b – короткие крылья.

Сцепленное наследование признаков задачи с решением

Задачи на сцепленное наследование неаллельных генов по Т.Моргану, при сдаче ЕГЭ по биологии оказываются сложными еще для бОльшего количества учащихся, чем задания по дигибридному скрещиванию неаллельных генов по Г.Менделю.

Снова подчеркну, что задачи на сцепленное наследование неаллельных генов ни в коем случае нельзя путать с задачами на анализирование закономерностей наследования признака, сцепленного с полом, то есть признака организма, аллельные гены которого находятся только в половых хромосомах или ХY.

Хорошо бы уяснить и то, в чем закон сцепленного наследованияТ.Моргана является противоположностью третьему закону независимого наследования признаков Г.Менделя:

а) по третьему закону Менделя во втором поколении от скрещивания дигетерозигот (AaBb x AaBb) образуется каждым из родителей с равной вероятностью (по 25%) по четыре сорта гамет AB, Ab, aB, ab .

б) по закону сцепленного наследования Моргана от скрещивания дигетерозигот (без кроссинговера) будет образовываться с равной вероятностью (по 50%) всего по два сорта гамет. Только AB и ab или Ab и aB (в зависимости от того какие аллели генов с какими являются сцепленными).

Итак, в задачах на сцепленное наследование надо определить какое потомство получится, если изучаемые признаки, находятся не в разных (как по Менделю), а в одной и той же паре гомологичных родительских хромосом, то есть относятся к одной группе сцепления.

А в чем проблема то

Поскольку анализируемые признаки в этом типе заданий относятся к одной группе сцепления, онии должны наследоваться по закону Моргана сцеплено или совместно. Да, действительно, чаще всего так и происходит, но как вы помните, при образовании половых клеток в профазе I мейоза может происходить кроссинговер (обмен равноценными участками гомологичных хромосом).

Да, интересен русский язык: пишу “может происходить “, подразумевая, что может и не происходить !

Так вот, с какой вероятностью возможен кроссинговер между данными в задаче парами анализируемых признаков, то есть с какой вероятностью произойдет нарушение закона ихсцепленного наследования, что приведет к образованию у дигетерозигот не только двух пар основных гамет (как должно быть без кроссинговера), а дополнительно еще двух пар кроссоверных гамет (всего образуется четыре сорта гамет как-будто по Менделю, но не в равном соотношении) – это и предстоит определить.

Для того, чтобы лучше разобраться в теме сцепленного наследования, разберем подробно решения нескольких задач.

Очень важно помнить всего лишь следующее правило Т.Моргана:

вероятность нарушения сцепленного наследования или возникновения кроссинговера между неаллельными генами одной группы сцепления при мейозе прямо пропорциональна расстоянию между ними в хромосоме.

Я бы, как репетитор ЕГЭ по биологии, настоятельно рекомендовал это правило воспринимать в ранге закона , так как именно оно настолько универсально, что позволяет устанавливатьгенетические карты организмов и на нем построено решение почти всех задач по сцепленному наследованию. В последних учебниках биологии это правило даже не выделено курсивом ?!

Таким образом, что получается? Чем дальше изучаемые гены находятся друг от друга в данной паре гомологичных хромосом, тем с большей вероятностью при образовании половых клеток они будут наследоваться порознь, не совместно.

И последнее, самое главное определение. Поскольку о расстоянии между неаллельными генами в хромосоме можно судить по частоте перекреста между ними, была введена единица измерениярасстояния между генами: 1 сантиморган – сМ (более старый термин морганида). 1 сМ равен 1% перекрес та .

Задача 1. На сцепленное наследование с кроссинговером

У человека гены А и В локализованы в аутосоме и растояние между ними 8 морганид. Какая вероятность рождения ребенка с генотипом и фенотипом матери, если ее генотип Аb//аВ, а генотип супруга аb//аb.

Без кроссинговера генотип матери способен образовать только такие гаметы как: Аb и аВ.

Поскольку указано расстояние между ними равное 8 морганидам, то это значит, что мы должны решать эту задачу с возможным протеканием кроссинговера. Кроссинговер обеспечит с вероятность 8% появление кроме основных гамет еще и рекомбинантных (кроссоверных) таких как АВ и аb .

Поскольку генотип отца гомозиготен по обоим признакам, то он образует хоть без кроссинговера, хоть с кроссинговером всего один «сорт» гамет аb.

Таким образом, мы получим потомков: Аb//аb, аВ//аb по 46%, и АВ//аb , аb//аb по 4%, то есть вероятность рождения ребенка гетерозиготного по обоим признакам как мать АаВb равна 4%.

Задача 2. Про бабочек с кроссинговером

У бабочки-парусника ген, обуславливающий окраску тела, и ген, контролирующий наличие выступа на крыле, являются доминантными и расположены на расстоянии 6 морганид. Какое потомство можно ожидать от скрещивания гетерозиготной по обоим признакам самки и неокрашенного самца без выступа на крыле?

Сказано, что доминантные аллели разных генов окраски тела самки бабочки (обозначим А) и формы края крыла (обозначим В) находятся в одной хромосоме. Так как ещё известно, что она гетерозиготна по обоим признакам, значит в другой, гомологичной этой хромосоме, у неё „сидят“ рецессивные аллели этих двух признаков ав. Про самца сказано, что он был с фенотипически рецессивным по обоими изучаемым признакам.

Итак, нам известны генотипы самки и самца бабочки парусника: АВ//ав и ав//ав. Самка без кроссинговера производит такие гаметы: АВ и ав (их будет образовываться при мейозе 94% ). Самец — только ав (хоть с кроссинговером, хоть без кроссинговера — он ведь гомозиготный).

Кроссинговер обеспечит образование самкой при мейозе еще 6% вот таких рекомбинантных гамет: Ав и аВ.

Потомство: АВ//ав и ав//ав ( 47% цветных с выступом на крыле — как исходная самка и 47% неокрашенных без выступа — как исходный самец).

Ав// иаВ//ав ( 3% цветных без выступа и 3% неокрашенных с выступом на крыле).

Задача 3. Разводим кроликов (с кроссинговером)

У кроликов рецессивный ген белой пятнистости (голландские кролики) сцеплен с рецессивным геном, обуславливающим длинный волосяной покров ангорского типа. Кроссинговер на этом участке составляет 14 %. Гомозиготного длинношерстного пятнистого кролика скрестили с особью дикого типа. Какие фенотипы, и в каком соотношении должны иметь место в случае возвратного скрещивания гибридов первого поколения с голландским длинношерстным кроликом?

А — однотонный окрас шерсти (дикий тип), В — нормальная (короткая) длина шерсти (дикий тип);

а — пятнистый окрас (голландский кролик), b — длинная шерсть (ангора).

P: ab//ab x AB//AB

G: …. ab ……………. AB

В этом первом скрещивании мы видим, что возможный кроссинговер при мейозе (образовании гамет) ни у одной из родительских форм (они обе дигомозиготы) не вызовет образования каких-либо новых рекомбинантных гамет: будут гаметы только ab и AB.

F1: .. AB//ab (все потомки в F1 получились дикого типа с однотонным окрасом и короткой шерстью, но уже дигетерозиготные).

Возвратное (обратное скрещивание с одним из родителей) скрещивание полученного гибрида с пятнистым длинношерстным даст:

P: AB//ab x ab//ab

G: AB, ab …………. ab (такие гаметы образуются без кроссинговера их 86%)

F2: AB//ab, ab//ab, соответственно, таких однотонных короткошерстных и пятнистых длинношерстных потомков будет рождаться по 43% .

В результате кроссинговера первый организм образует еще и такие рекомбинантные гаметы как: Ab и aB , поэтому появятся еще с вероятностью 14 % кролики вот с такими генотипами: Ab//ab и aB//ab , то есть однотонные с длинной шерстью и пятнистые с короткой шерстью по 7% .

Задачи на сцепленное с полом наследование признаков

Сцепленное наследование признаков черного и рыжего цвета шерсти у кошек

Задача 1
Известно, что «трехшерстные» кошки — всегда самки. Это обусловлено тем, что гены черного и рыжего цвета шерсти аллельны и находятся в Х – хромосоме. Ни один из них не доминирует, а при сочетании рыжего и черного цвета формируются «трехшерстные» особи.
1. Какова вероятность получения в потомстве «трехшерстных» котят от скрещивания «трехшерстной» кошки с черным котом?
2. Какое потомство можно ожидать от скрещивания черного кота с рыжей кошкой?
Решение:
Интересное сочетание: гены черного и рыжего цвета не доминируют друг над другом, а в сочетании дают «трехшерстную» масть. Здесь наблюдается кодоминирование (взаимодействие генов). Возьмем: А – ген отвечающий за черный цвет, В – ген отвечающий за рыжий цвет; гены А и В равнозначны и аллельны ( А=В ), но эти гены находятся в Х – хромосоме. Поэтому мы обозначаем ген черного цвета Х A , ген рыжего цвета – Х В .

Читайте так же:  Заявление на выплату страхового возмещения в банках

По условия пункта 1 скрещиваются трехшерстная кошка с черным котом.

По условиям пункта 2 скрещиваются рыжая кошка с черным котом:

При решении задачи использовали закон чистоты гамет и сцепленное с полом наследование. Взаимодействие генов: кодоминирование. Вид скрещивания: моногибридное.

У человека гемофилия передается как рецессивный сцепленный с Х – хромосомой признак

Задача 2
Классическая гемофилия передается как рецессивный сцепленный с Х – хромосомой признак.
1. Мужчина, больной гемофилией, жениться на женщине, не имеющей этого заболевания. У них рождаются нормальные дочери и сыновья, которые все вступают в брак с не страдающими гемофилией лицами. Обнаружится ли у внуков вновь гемофилия, и какова вероятность появления больных в семье дочери или сына?
2. Мужчина, больной гемофилией, вступает в брак с нормальной женщиной, отец которой страдал гемофилией.
Определите вероятность рождения в этой семье здоровых детей.
Решение:

По условиям пункта 1 ясен генотип больного мужчины: Х h . Так как женщина не страдает гемофилией, у нее обязательно должен быть доминантный ген «нормы» — Х H . Второй ген женщины также доминантный (Х H ), в генотип женщины Х H Х H . Генотипы детей от такого брака:

Иначе говоря, все мальчики будут здоровы, гена гемофилии у них не будет, а все девочки будут гетерозиготными – в рецессиве у них будет ген гемофилии.
Если все мальчики в последствии вступят в брак со здоровыми в отношении гемофилии лицами (Х H Х H ), гемофилия у внуков не проявится. Если дочери (Х H Х h ) вступят в брак со здоровыми мужчинами (Х H Y), вероятность проявления гемофилии у внуков будет равна1/4, или 25%. По полу это будут мальчики:

По условиям пункта 2 в брак вступает больной мужчина (генотип X h Y) с женщиной, не страдающей болезнью. Следовательно, у женщины один ген обязательно «норма» – Х H . Но второй ген из этой пары у нее должен быть геном гемофилии – Х h , так как отец этой женщины страдал гемофилией, а женщина получает всегда одну Х – хромосому от матери, а вторую – от отца. Генотип женщины – Х H Х h . Вероятность рождения здоровых детей в этой семье равна 1/2. Девочки с генотипом Х h Х h погибают.

Задача 3
У человека классическая гемофилия наследуется как сцепленный с Х – хромосомой рецессивный признак. Альбинизм (отсутствие пигментации) обусловлен аутосомным рецессивным геном. У одной супружеской пары, родился сын с обеими аномалиями. Какова вероятность того, что у второго сына в этой семье проявится также обе аномалии одновременно?
Решение:

По условиям задачи оба родителя нормальны, следовательно, у них обязательно есть по доминантному гену из каждой пары Х H и А. Сын имеет обе аномалии, его генотип Х h Yаа. Х – хромосому с геном гемофилии он мог унаследовать только от матери. Один из генов альбинизма сын получил от матери, другой — от отца. Таким образом, генотип матери Х H Х h Аа, генотип отца Х H YАа. При таком браке вероятны генотипы детей:

Вероятность того, что следующий ребенок будет сыном, равна 1/2. Из числа сыновей лишь 1/8 может иметь одновременно обе аномалии. Для вычисления окончательного результата вероятности перемножаются: 1/2 х 1/8=1/16.

Гипертрихоз передается как сцепленный с Y — хромосомой признак

Задача 4
Гипертрихоз (вырастание волос на краю ушной раковины) передается через Y – хромосому, а полидактилия (шестипалость) – как доминантный аутосомный ген. В семье, где отец имел гипертрихоз, а мать – полидактилию, родилась нормальная в отношении обоих признаков дочь. Какова вероятность того, что следующий ребенок в этой семье будет также без обеих аномалий?
Решение:
В условиях задачи ген гипертрихоза обозначим звездочкой (*), находящейся в Y*– хромосоме, в Х – хромосоме нет гена аллельного гену гипертрихозу:

Так как отец имел гипертрихоз и был пятипалым, его генотип XY*aa. У матери не было гипертрихоза (и не могло быть, так как у нее нет Y — хромосомы), но она была шестипалой. Следовательно, у нее должен быть хотя бы один ген шестипалости – А. В этой семье родилась нормальная девочка. Ее генотип ХXаа. Один ген пятипалости она получила от отца, а второй ген пятипалости могла получить только от матери. На основе этого решаем, что мать была гетерозиготна по гену шестипалости. Ее генотип ХХАа. Вероятны генотипы детей:

Без обоих аномалий возможна лишь 1/4 детей, или 25%.

Наследование отсутствия потовых желез у человека как рецессивного сцепленного с полом признака

Задача 5
У человека отсутствие потовых желез проявляется как сцепленный с полом рецессивный признак. Глухота, то есть отсутствие слуха, обусловлено аутосомным рецессивным геном. У супружеской пары, нормальной по этим признакам, родился сын с обоими аномалиями. Определите возможные генотип родителей и вероятность рождения ребенка с таким же генотипом как первый. Дать цитологическое обоснование.
Решение:

ак как оба родителя были здоровы, значит ген отсутствия потовых желез является рецессивным и находиться в Х – хромосоме у женщины, т.к. она имеет две Х – хромосомы (в одной Х – хромосоме доминантный ген нормы, а в другой Х – хромосоме – рецессивный ген. Оба родителя гетерозиготы по гену глухоты, потому что у них родился больной сын

Вероятность рождения в этой семье больного ребенка с обоими аномалиями (ааХ b Y) — 1/16 или 0,0625%.

Цитологическое обоснование.
(Гены находятся в хромосомах: — Х-хромосома с генами, — У)

Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задачи: чистоты гамет, сцепленное с полом наследование, закон независимого наследования признаков.

Задача 6
У дрозофилы гены определяющие окраску глаз, локализованы в Х – хромосоме. Доминантный аллель W детерминирует красную окраску глаз, его рецессивный аллель w – белую. Скрещивали гомозиготную красноглазую самку с белоглазым самцом. В F1 получили 48 потомков. От скрещивания их между собой получено 192 мухи в потомстве F2.
Определите:
1. Сколько женских особей было в F1?
2. Сколько самцов в F1 имело красную окраску глаз?
3. Сколько самок F1было красноглазых?
4. Сколько самцов в F2 было белоглазых?
5. Составить схему скрещивания.
Решение:
Х W – ген определяющий красные глаза
Х w – ген определяющий белые глаза

1). Скрещивание гомозиготной красноглазой самки с белоглазым самцом:

Соотношение особей в потомстве 1:1. По фенотипу все особи красноглазые.
Поэтому:
1. Женских особей в F1 было 48:2=24особи.
2. В F1 все самцы (24особи) имели красные глаза.
3. Все самки в F1 были красноглазыми (24 особи).

2). Скрещивание между собой гибридов F1:

Соотношение особей в потомстве 1:1:1:1
Поэтому: в F2 белоглазых самцов было (192:4; х2 = 96 особей).
Взаимодействие генов: полное доминирование. Законы генетики: закон чистоты гамет и сцепленное с полом наследование.

Задача 7
Селекционеры в некоторых случаях могут определить пол только что вылупившихся цыплят.
При каких генотипах родительских форм, возможно это сделать, если известно, что гены золотистого (коричневого) и серебристого (белого) оперения расположены в Х – хромосоме и ген золотистого оперения рецессивен по отношению к серебристому? Не забудьте, что у кур гетерогенным полом является женский!
Решение:
А – ген серебристого окрашивания
а – ген золотистого окрашивания

При скрещивании серебристой курочки с золотистым петушком курочки будут все золотистые, а петушки серебристые. Таким образом, петушки с серебристой окраской оперения будут иметь генотип Х A Х a , а курочки с золотистой окраской оперения — Х A Y.

Задача 8
Гипертрихоз наследуется как сцепленный с У – хромосомой признак, который проявляется лишь к 17 годам жизни. Одна из форм ретинита (ночная слепота) наследуется как рецессивный, сцепленный с Х – хромосомой признак. В семье, где женщина по обоим признакам здорова, а муж является обладателем только гипертрихоза, родился мальчик с ретинитом. Определить вероятность проявления у этого мальчика гипертрихоза. Определить вероятность рождения в этой семье детей без обоих аномалий и какого, они будут пола.
Решение:
X A – ген нормального ночного зрения;
Х a –ген ночной cлепоты;
Y* — ген гипертрихоза;
Y – ген нормы

Соотношение особей в потомстве 1:1:1:1
Вероятность проявления у первого сына гипертрихоза – 100%. Вероятность рождения здоровых детей – 50% (они будут только девочки).

Задача 9
У человека есть несколько форм стойкого рахита. Одна из его форм наследуется доминантно сцеплено с полом, вторая рецессивно – аутосомная. Какова вероятность рождения больных детей, если мать гетерозиготная по обоим формам рахита, а отец здоровый все его родственники здоровы?
Решение:
Х А – рахит (первая форма);
Х a – норма;
В – норма;
b – рахит (вторая форма).
Из условия задачи видно, что генотип женщины X А X a Bb, а мужчины — X a YBB – он гомозиготен по второй паре генов, т.к. все его родственники здоровы.

Вероятность больных детей 4/8 или 50%. Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задач: закон чистоты гамет, сцепленное с полом наследование, закон независимого комбинирования признаков.

Читайте так же:  Какие документы необходимы для подачи в арбитражный суд

Задача 10
У некоторых пород кур гены, определяющие белый цвет и полосатую окраску оперения, сцеплены с Х – хромосомой, полосатость доминирует над белой сплошной окраской. Гетерогаметный пол у кур женский. На птицеферме белых кур скрестили с полосатыми петухами и получили полосатое оперение как у петушков, так и у кур. Затем скрестили особи, полученных от первого скрещивания, между собой и получили 594 полосатых петушка и 607 полосатых и белых курочек. Определите генотипы родителей и потомков первого и второго поколения.
Решение:
Х А – полосатые;
Х a – белые
У кур гетерогаметный пол, у петухов гомогаметный. Если в F1 все потомки независимо от пола полосатые, то петух гомозиготен и полосатость – доминантный признак. Во втором поколении наблюдается расщепление признака, поэтому петушок в F2 будет гетерозиготен.
a)

Задачи на сцепленное наследование

Скрестили дигетерозиготных самцов мух дрозофил с серым телом и нормальными крыльями (признаки доминантные) с самками с черным телом и укороченными крыльями (рецессивные признаки). Составьте схему решения задачи. Определите генотипы родителей, а также возможные генотипы и фенотипы потомства F1, если доминантные и рецессивные гены данных признаков попарно сцеплены, а кроссинговер при образовании половых клеток не происходит. Объясните полученные результаты.

А — серое тело, а — черное тело
B — нормальные крылья, b — укороченные крылья

Если кроссинговер не происходит, то у дигетерозиготного родителя образуется только два вида гамет (полное сцепление).

Дигетерозиготное растение гороха с гладкими семенами и усиками скрестили с растением с морщинистыми семенами без усиков. Известно, что оба доминантных гена (гладкие семена и наличие усиков) локализованы в одной хромосоме, кроссинговера не происходит. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, соотношение особей с разными генотипами и фенотипами. Какой закон при этом проявляется?

А — гладкие семена, а — морщинистые семена
B — наличие усиков, b — без усиков

Если кроссинговер не происходит, то у дигетерозиготного родителя образуется только два вида гамет (полное сцепление).

У кукурузы рецессивный ген «укороченные междоузлия» (b) находится в одной хромосоме с рецессивным геном «зачаточная метелка» (v). При проведении анализирующего скрещивания с растением, имеющим нормальные междоузлия и нормальную метелку, всё потомство было похоже на одного из родителей. При скрещивании полученных гибридов между собой в потомстве оказалось 75% растений с нормальными междоузлиями и нормальными метелками, а 25% растений с укороченными междоузлиями и зачаточной метелкой. Определите генотипы родителей и потомства в двух скрещиваниях. Составьте схему решения задачи. Объясните полученные результаты. Какой закон наследственности проявляется во втором случае?

Если при анализирующем скрещивании всё потомство получилось одинаковым, значит анализируемый организм был доминантной гомозиготой (закон единообразия).

Во втором скрещивании проявляется закон сцепленного наследования, поскольку у организма BV/bv образуется только два вида гамет BV и bv, а гаметы Bv и bV не образуются.

При скрещивании душистого горошка с яркой окраской цветов и усами с растением с бледной окраской цветков и без усов (гены сцеплены) в F1 все растения были с яркими цветками и усами. При скрещивании между собой гибридов F1 были получены растения: с яркими цветками и усами, бледными цветками и без усов. Составьте схему решения задачи. Определите генотипы родителей, потомства F1 и F2. Какие законы наследственности проявляются в данных скрещиваниях? Объясните появление двух фенотипических групп особей в F2.

В F1 все потомство получилось одинаковым. Следовательно, скрещивали двух гомозигот, проявившиеся в F1 признаки являются доминантными.

А — яркие цветки, a — бледные цветки
B — усы, b — без усов.

В первом скрещивании проявился закон единообразия, во втором – закон сцепления. Две (а не четыре) фенотипические группы появились из-за сцепления генов.

При скрещивании самок мух дрозофил с серым телом и нормальными крыльями (доминантные признаки) с самцами с черным телом и укороченными крыльями (рецессивные признаки) в потомстве были обнаружены не только особи с серым телом, нормальными крыльями и черным телом, укороченными крыльями, но и небольшое число особей с серым телом, укороченными крыльями и черным телом, нормальными крыльями. Определите генотипы родителей и потомства, если известно, что доминантные и рецессивные гены данных признаков попарно сцеплены. Составьте схему скрещивания. Объясните полученные результаты.

А — серое тело, а — черное тело
B — нормальные крылья, b — укороченные крылья

Небольшое количество особей с серым телом, укороченными крыльями и черным телом, нормальными крыльями объясняется тем, что они возникли из яйцеклеток, в которых произошла рекомбинация из-за кроссинговера.

При скрещивании растений кукурузы с гладкими окрашенными зернами с растением, дающим морщинистые неокрашенные семена, в первом поколении все растения давали гладкие окрашенные зерна. При анализирующем скрещивании гибридов из F1 в потомстве было четыре фенотипические группы: 1200 гладких окрашенных, 1215 морщинистых неокрашенных, 309 гладких неокрашенных, 315 морщинистых окрашенных. Составьте схему решения задачи. Определите генотипы родитетелй и потомства в двух скрещиваниях. Объясните формирование четырех фенотипических групп во втором скрещивании.

Поскольку в первом поколении получилось единообразие (первый закон Менделя), следовательно, скрещитвали гомозигот, в F1 получилась дигетерозигота, несущая доминантные признаки.

А — гладкие зерна, а — морщинистые зерна.
B — окрашенные зерна, b — неокрашенные зерна.

Анализирующее скрещивание – это скрещивание с рецессивной гомозиготой. Поскольку во втором поколении получилось неравная численность фенотипических групп, следовательно, имело место сцепленное наследование. Те фенотпические группы, которые представлены в большом количестве, получены из нормальных гамет со сцепленными генами, а группы, представленные в малом количестве – из рекомбинантных гамет, сцепление в которых было нарушено из-за кроссинговера в мейозе.

5. Неполное сцепление

При неполном сцеплении гомологичные хромосомы могут обмениваться аллельными генами. Причиной этого является кроссинговер, который, в свою очередь, является результатом того, что при мейозе гомологичные хромосомы конъюгируют и могут обмениваться участками.

В результате этого при скрещивании дигетерозигот с генотипом с гомозиготами по рецессиву, имеющими генотип , в потомстве, наряду с обычными, появляется некоторое количество особей, образовавшихся в результате слияния кроссоверных гамет (рекомбинантов), имеющих генотип или .

Читайте также другие темы главы VI «Сцепленное наследование»:

Решение генетических задач. Сцепленное наследование

Урок 31. Введение в общую биологию и экологию 9 класс

Конспект урока «Решение генетических задач. Сцепленное наследование»

Задача 1. Гены B, C и D находятся в одной хромосоме. Между генами B и C кроссинговер происходит с частотой 6,5 %, между генами C и D – с частотой 3,7 %. Определить взаиморасположение генов B, C, D в хромосоме, если расстояние между генами B и D составляет 10,2 морганиды.

Решение: процент кроссинговера равен расстоянию между генами в морганидах.

Гены в хромосоме располагаются линейно. Распределим их на одной линии, в соответствии с условием задачи. Между геном B и D – 10,2 морганиды. Между B и C – 6,5 морганиды. Между C и D – 3,7 морганиды.

Задача 2. Гены А и С расположены в одной группе сцепления, расстояние между ними 4,6 морганиды. Определите, какие типы гамет и в каком процентном соотношении образуют особи генотипа АаСс.

Решение: определяем типы гамет. У организма с данным генотипом наблюдается неполное сцепление генов. Значит, он будет давать четыре типа гамет. Некроссоверные – АС и ас и кроссоверные – Ас и аС.
Определяем процентное соотношение гамет. Расстояние между генами в 4,6 морганид говорит нам о том, что вероятность кроссинговера составляет 4,6 %. Таким образом, общее количество кроссоверных гамет составит те же 4,6 %. Поскольку таких гамет у нас два типа, рассчитываем количество каждого из них. Получаем по 2,3 % Ас и аС.
Итак, всего гамет – 100%. Находим общее количество некроссоверных гамет – 95,4 %. Делим на два и получаем количество каждого типа некроссоверных гамет АС и ас – по 47,7 %.

Ответ: данный организм будет давать четыре типа гамет. По 47,7 % некроссоверных АС и ас и по 2,3 % кроссоверных Ас и аС.

Задача 3. При скрещивании самок дрозофил, дигетерозиготных по генам А и В, с рецессивными по обоим генам самцами получены следующие расщепления по фенотипу:

1. AB :Ab :aB :ab = 25 % : 25 % : 25 % : 25 %.

2. AB :Ab :aB :ab = 47 % : 3 % : 3 % : 47 %.

В каком случае наблюдается свободное комбинирование, а в каком – сцепленное наследование? Определите расстояние между генами А и В для случая сцепленного наследования. Обозначьте расположение генов в хромосомах для всех случаев.

Решение: определяем тип наследования.

Свободное комбинирование будет иметь место в первом случае, так как разные типы гамет образуются в одинаковых количествах. Это говорит нам также о том, что гены расположены в разных парах хромосом.

Во втором случае образуется разное количество типов гамет. Значит, мы имеем дело со сцепленным наследованием.

Определяем расстояние между генами.
Для этого находим общее число рекомбинантных потомков. Поскольку каждого типа таких гамет образуется по три процента, то общее количество рекомбинантных гамет составит шесть процентов. Из чего делаем вывод, что расстояние между генами А и B6 морганид и располагаются они в одной паре хромосом.

Читайте так же:  Договор с родителями об обучении на дому

Ответ: в первом случае – свободное комбинирование генов, расположенных в разных парах хромосом, во втором – сцепленное наследование. Гены A и B расположены в одной паре хромосом на расстоянии 6 морганид.

Задача 4. У томатов высокий рост стебля доминирует над карликовым, а шаровидная форма плода над грушевидной, гены высоты стебля и формы плода сцеплены и находятся друг от друга на расстоянии 20 морганид. Скрещено дигетерозиготное растение с карликовым, имеющим грушевидные плоды. Какое потомство и в каком соотношении следует ожидать от этого скрещивания?

Решение: вводим буквенные обозначения генов. Пускай А – ген, отвечающий за высокий рост стебля, а – за карликовый рост. B определяет шаровидную форму плодов, b – грушевидную форму.

Записываем генотипы родительских форм. Они нам известны из условия задачи.
Как мы знаем, дигетерозиготная по двум признакам особь будет давать четыре типа гамет в равном количестве. Но это в том случае, если гены высоты стебля и формы плода находятся в разных парах хромосом. В случае же сцепленного наследования, то есть когда эти гены находятся в одной паре хромосом, дигетерозигота будет образовывать только два типа гамет: AB и ab. Однако, в условии задачи сказано, что расстояние между генами роста и формы плода равно 20 морганидам. Это означает, что образуется 20 % кроссоверных гамет: 10 % Ab и 10 % aB.
Определяем количество некроссоверных гамет AB и ab. Общее количество гамет – 100 %. Кроссоверных – 20 %. Значит, некроссоверных – 80 %. 40 % AB и 40 % ab.

Рассчитаем количество потомков. Их будет четыре типа: высокого роста с круглыми плодами, высокого роста с грушевидными плодами, карликовых с круглыми плодами и карликовых с грушевидными плодами.
Обратите внимание – при независимом наследовании признаков мы получили бы вот такое процентное соотношение.

В нашем же случае, когда гены находятся в одной паре хромосом, это соотношение будет следующим.

Ответ: в потомстве следует ожидать 40 % особей высокого роста с круглыми плодами, 40 % карликовых с грушевидными плодами, 10 % высокого роста с грушевидными плодами и 10 % карликовых с круглыми плодами.

Однако, не всё так просто. Насколько слово «просто» применимо к задачам на сцепленное наследование.

При решении задачи мы приняли, что у одного (гетерозиготного) родителя гены A и B находились в одной хромосоме, а гены a и b – в другой. Но у этого родителя гены могли располагаться иначе. Кроссинговер мог произойти где-то в предыдущих поколениях. Тогда гены A и b были бы в одной хромосоме, а гены а и B – в другой.
В таком случае соотношения гамет были бы другими. Некроссоверных Ab и аB – по 40 %, а кроссоверных – АB и аb – по 10 %. Соответственно, изменилось бы и процентное сочетание потомков.

Задача 5. Скрещивание между гомозиготным серым длиннокрылым самцом дрозофилы и гомозиготной черной самкой с зачаточными крыльями дало в F1 гетерозиготных потомков с серым телом и длинными крыльями.

При возвратном скрещивании мух из поколения F1 с гомозиготными рецессивными по двум признакам особями были получены следующие результаты: серое тело, длинные крылья – 5 965, чёрное тело, зачаточные крылья – 944; чёрное тело, длинные крылья – 206, серое тело, зачаточные крылья – 185. Определите расстояние между генами.

Неодинаковое расщепление в потомстве при возвратном скрещивании говорит нам о том, что это сцепленное наследование.
Для того, чтобы определить расстояние между генами, нам нужно узнать процент кроссинговера. Процент кроссинговера можно найти, рассчитав процент кроссоверных гамет. Находим процент кроссоверных гамет:

Ответ: расстояние между генами составляет 17 морганид.

Задачи на сцепленное наследование

Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу biorepet-ufa.ru.

Задачи на сцепленное наследование неаллельных генов по Т.Моргану, при сдаче ЕГЭ по биологии, оказываются сложными еще для бОльшего количества учащихся, чем задания по дигибридному скрещиванию неаллельных генов по Г.Менделю.

Подчеркну, что задачи на сцепленное наследование неаллельных генов ни в коем случае нельзя путать с задачами на анализирование закономерностей наследования признака, сцепленного с полом, то есть признака организма, аллельные гены которого находятся только в половых хромосомах X или Y.

Закон сцепленного наследования неаллельных генов Т.Моргана применяется в задачах по генетике, где анализируется поведение как минимум ДВУХ признаков, гены которых находятся обязательно в одной хромосоме организма (как правило в аутосомах, но могут быть и в половых хромосомам), При изучении же наследования сцепленного с полом, может изучаться и один признак, но обязательно «сидящий» в половой хромосоме.

Хорошо бы уяснить и то, в чем закон сцепленного наследования Т.Моргана является противоположностью третьему закону независимого наследования признаков Г.Менделя, установленному им при дигибридном скрещивании.

а) по третьему закону Менделя при дигибридном скрещивании во втором поколении от скрещивания дигетерозигот (AaBb x AaBb) друг с другом образуется каждым из родителей с равной вероятностью (25%) по четыре сорта гамет AB, Ab, aB, ab .

б) по закону сцепленного наследования Моргана от скрещивания дигетерозигот (без кроссинговера) будет образовываться с равной вероятностью (по 50%) лишь по два сорта гамет. Только AB и ab или Ab и aB (в зависимости от того, какие аллели генов с какими являлись изначально сцепленными АВ//ab или Ab//aB ).

Итак, в задачах на сцепленное наследование надо определить какое потомство получится, если изучаемые признаки, находятся не в разных (как по Менделю), а в одной и той же паре гомологичных родительских хромосом, то есть относятся к одной группе сцепления.

А в чем проблема то

Поскольку анализируемые признаки в этом типе заданий относятся к одной группе сцепления, они и должны наследоваться по закону Моргана сцеплено или совместно. Да, действительно, чаще всего так и происходит, но как вы помните, при образовании половых клеток в профазе I мейоза может происходить кроссинговер (обмен равноценными участками гомологичных хромосом).

Да, интересен русский язык: пишу «может происходить «, подразумевая, что может и не происходить !

Так вот, с какой вероятностью возможен кроссинговер между данными в задаче парами анализируемых признаков, то есть с какой вероятностью произойдет нарушение закона их сцепленного наследования, что приведет к образованию у дигетерозигот не только пары основных нерекомбинантных гамет (как должно быть без кроссинговера), а дополнительно еще пары кроссоверных гамет (тогда всего образуется тоже четыре сорта гамет как-будто по Менделю, но не в равном соотношении) — это и предстоит определить.

Обращаю ваше внимание еще и вот на что: а) как происходит кроссинговер; б) и к чему он приводит в итоге. Без глубокого понимания этого момента трудно разобраться с сутью решения задач на сцепленное наследование.

Фактически: а) кроссинговер происходит за счет обмена аллельными генами; б) приводит это к образованию новых сочетаний в хромосоме неаллельных генов.

Для того, чтобы лучше разобраться в теме сцепленного наследования, предлагаю к изучению свою новую платную книжку « Как решать задачи по генетике на сцепленное наследование « .

Очень важно помнить следующее правило Т.Моргана:

вероятность нарушения при мейозе сцепленного наследования (вследствие кроссинговера) между неаллельными генами одной группы сцепления прямо пропорциональна расстоянию между ними в хромосоме.

Я бы, как репетитор ЕГЭ по биологии, настоятельно рекомендовал это правило воспринимать в ранге закона , так как именно оно настолько универсально, что позволяет устанавливать генетические карты организмов и на нем построено решение почти всех задач по сцепленному наследованию. В последних учебниках биологии это правило даже не выделено курсивом ?!

Таким образом, что получается? Чем дальше изучаемые гены находятся друг от друга в данной паре гомологичных хромосом, тем с большей вероятностью при образовании половых клеток они будут наследоваться порознь, не совместно.

И последнее, самое главное определение. Поскольку о расстоянии между неаллельными генами в хромосоме можно судить по частоте перекреста между ними, была введена единица измерения расстояния между генами: 1 сантиморган — сМ (более старый термин морганида). 1 сМ равен 1% перекреста .

Ниже приводятся лишь условия некоторых задач на сцепленное наследование, часть из которых была взята из тестовых заданий ЕГЭ 2013 — 2016 гг.

Кто хочет хорошо разобраться с решением генетических задач на сцепленное наследование , предлагаю свою новую платную книгу.

небольшая (но очень емкая) теоретическая часть

и даны подробные решения задач:

1) общего методического плана (28 задач);

2) задач из ЕГЭ за прошлые годы (24 задачи) и

3) задачи на сцепленное наследование с кроссинговером (22 задачи).

У кого будут вопросы по книге, пишите в комментариях к этой статье. У меня на блоге вы можете приобрести ответы на все тесты ОБЗ ФИПИ за все годы проведения экзаменов по ЕГЭ и ОГЭ (ГИА).